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Abstract— Parkinson's Disease (PD) is a degenerative disease 

of the central nervous system with a profound effect on the motor 

system. Symptoms include slowness of movement, rigidity of 

motion and in some patients, tremor. The severity of the disease 

is quantified using the Unified Parkinson Disease Rating Scale 

(UPDRS) which is a subjective scale performed and scored by 

physicians. In this work, we present an automated, objective 

quantitative analysis of four UPDRS motor examinations of 

Hand Movement and Finger Taps.  

For this purpose, a non-invasive system for recording and 

analysis of fine motor skills of hands was developed. The system 

is based on a simple low-cost depth acquisition sensor, similar to 

the second generation of Microsoft’s Kinect sensor, and novel 

recursive self-correcting hand tracking algorithm. The system 

allows patients to perform test tasks in a natural and unhindered 

manner.  

The evaluation of the system was carried out on PD patients 

and controls. Machine Learning based classification was 

performed on the acquired data, followed by a decision making 

scheme.  

 

Index Terms—Machine Learning, Support Vector Machine 

(SVM) classification, Parkinson’s Disease, UPDRS.  

I. INTRODUCTION  

Parkinson's disease (PD) is a neurodegenerative disorder 

characterized by "masklike" facial features, bradykinesia, 

tremor at rest, and muscle rigidity. PD affects approximately 

1%-3% of individuals over the age of 65. The number of 

patients suffering from PD is increasing; partly in association 

with increased life expectancy [1]. PD causes a social and 

financial burden. In the USA, the annual total cost associated 

with PD was estimated to be 23 billion US$ [2].  

The development of new treatments for PD is hampered by 

the subjectivity of treatment efficacy assessment, which is 

done today by using the Unified Parkinson Disease Rating 

Scale (UPDRS) [3]. This tool is based on a score derived from 

the neurological evaluation performed by the treating 

physician and is a subjective score. Thus, the UPDRS lacks a 

high degree of objectivity, impartiality and sensitivity. 

Moreover, intermittent hospital monitoring, which provides 

only a narrow window into the health of a person, might miss 

trends that can lead to early detection of a problem.  

Several studies have proposed methods for automating the 

UPDRS test. These have focused on methods that use 

wearable devices and sensors such as wireless accelerometers 

[4], wearable triaxial gyroscopes [5], virtual touchpads [6], [7] 

or EOG  signal analysis (i.e. analysis of the electric signals 

originating in the eye) [8]. Or remote methods, such as [9], 

[10], but with many restrictions on patient movements and 

complex setups, which makes it less approachable for daily 

use or for unexperienced personnel. Furthermore, none of 

these studies analyzed movement and motor performance of 

specific UPDRS motor tasks. And thus, to date, cannot be 

adopted in clinical practice. 

In this work a passive, non-invasive and relatively non 

restricting system that allows an examinee to perform several 

UPDRS motion tests in his natural environment, without being 

confined to a small region in space, is developed using a 3D 

depth sensor. Specifically, motor features of PD as expressed 

by Hand Movements, Finger Taps and Rapid Alternating 

Movements of Hands (questions 23-25 of the motor UPDRS) 

were acquired. Hands tracking and feature extraction 

algorithms were used to obtain objective and quantitative 

measures from the acquired data and Machine Learning 

techniques were used to classify patients into healthy and PD 

groups.  

 

II. SYSTEMS AND METHODS 

A. Settings and Data Acquisition Procedure 

For data acquisition, a Microsoft 3D camera sensor based 

on Time of Flight (TOF) technology was used. The data from 

this camera acquired in 4 matrices of 986 by 274 pixels with a 

rate of 24 frames per second. The first three containing aligned 

Cartesian coordinates with 1mm resolution, and the fourth 

matrix represents reflection intensity (of Near Infra-Red 

spectrum) that gives a user a detailed grayscale image. The 

advantages of this sensor are its high resolution, relatively fast 

frame rate and in its native perfect synchronization between the 

spatial and intensity data.  

During the experiment, a total of 13 patients were recorded 

(8 PD and 5 Healthy), between the ages of 50 to 75, performing 

each of the four tests. All the patients were checked by 



 

 

physician in order to determine the severity of the disease.  The 

acquisition of Finger Taps and Hand Movements information 

was performed by requesting the subjects to perform the 

UPDRS Hand Movement tasks:  

1. Finger Taps – patient taps thumb with index finger of 

same hand in rapid succession.  

2. Hand Movements – patient opens and closes hand in 

rapid succession.  

3. Rapid Alternating Movements of Hands (two 

conditions) – patient performs pronation-supination 

movements of hands, vertically and horizontally, with 

as large an amplitude as possible, with both hands 

simultaneously. 

B. Hand Motion Tracking Algorithm 

Most of the hands and skeleton tracking algorithms were 

initially designed for gestures understanding in native user 

interfaces, and for the gaming industry. This makes them less 

suitable for use by the elderly, or people with different 

disabilities, due to different motion-prediction and signal 

filtering techniques. For this reason, we developed a new 

robust algorithm for hand tracking, in order to constrain the 

examinee as little as possible. The only assumption for the 

proposed hand tracking algorithm is that the examinee is 

located in front of the camera sensor and within its coverage 

area.  

The proposed hand motion tracking algorithm consists of 

four main steps: (1) hand palm detection step; (2) hand palm 

tracking step; (3) center of palm determination step; and (4) 

self-correction step. These steps are described in detail below.  

 

1) Hand Palm Detection Algorithm 

The main stages of this part can be seen in Fig.  1. The 

algorithm starts by performing background segmentation using 

depth thresholds, then the center of body mass is identified 

using clustering and depth gradients detection is performed 

using a difference filter in the horizontal direction (first and 

second stages in Fig.  1). Later, an “Edge to Edge” distances 

map is constructed, in order to segment out the torso and find 

the head location, describing the distances between the start 

and end edges in each row (see step three and four in Fig.  1). 

This process is performed similarly to the one described in 

[11]. After the main body parts are segmented out, two 

thresholding procedures (coarse and fine) are performed in 

order to focus on the palm region (as shown in last two steps in 

Fig.  1). If after the final step the palm area could not be found, 

the process is repeated on the following frame.   

 

 

Fig.  1. Palm detection algorithm graphical description. Starting from body 
center determination, followed by edge detection on depth data, then “Edge to 

Edge” map creation and head and torso detection and removal. Finished by 

coarse and fine thresholding, leaving up only the palm displayed.  

2) Palm Tracking Step 

Once the hand palm is found, its center coordinates are 

calculated (explained in detail in the next section) and used as a 

predictor to the next frame’s Region of Interest (ROI) location 

(i.e. regions which are left after completion of the  

segmentation process). This way, the following frames do not 

need the hand palm detection step. This method is used 

recursively, until the algorithm fails to detect connected 

elements in the tracking area, or has reached the last frame. If 

the ROI was not found in previous frames, the method will be 

implemented backwards recursively, until the algorithm fails, 

or succeeds to find the palms in all missing frames. 

 

3) Palm Center Determination 

First a binary segmentation inside ROI is performed to find 

the palm inner contour, then the center of the palm is defined as 

the center of the biggest circle that fits inside the contour, 

which is a variation of an idea first described in [12]. The 

procedure of finding the biggest circle is implemented by a 

“growing from inside” procedure.  

 

4) Tracking Algorithm Termination Terms 

In case of a wrong identification of a palm center (for 

example due to confusion with other body parts), the tracking 

must break and a correct ROI must be re-found. Most of the 

wrong identification cases can be identified by the following 

termination steps:  

Solidity (S): A measure that can be calculated on defined 

image region. Solidity is defined as the portion of the pixels in 

the convex hull that are also in the region. It can be calculated 

as the ratio between region area, and the convex area. While 

the head, knees and torso are characterized by high (bigger 

than 0.92) values of Solidity, the palm is usually characterized 

with smaller values (0.7 when opened to 0.95 when closed). 

 Normalized Area (NA): Computed by multiplying the 

number of pixels the object consists by the squared distance of 

this object from the sensor.  

The advantage of this factor is that it can be considered as 

distance invariant. Intuitively, a palm is smaller than other 

body organs, and when it is closed it is significantly smaller (as 

can be seen in Fig.  2).  



 

 

Solidity and Normalized Area (SNA): A Combination of 

the two above factors: if an object is both big and has high 

solidity, then it is probably not a palm, as can be seen in Fig.  2. 

Stability (St): Can be defined as measure of change of the 

SNA components and center of palm. In case of a static 

position, these components do not change their values, which 

may indicate a misidentification of the palm and a correction of 

previous frames can be issued.  

If one of the Termination Terms is satisfied, the Tracking 

recursion will be terminated, and Palm Detection Algorithm 

will be called again.  

C. Algorithm Quality Assurance 

In order to validate the results of the palm center detection 

and tracking algorithms, a comparison to manually marked 

frames from several positions, recordings and examinees was 

performed. The success rate of the algorithm stands on 88%, 

while most of the errors are from false negative group (9%), 

i.e. frames with hand palm that the algorithm decided to omit. 

The false negative group is not expected to influence the 

classification since they will be ignored at features extraction 

phase.  

 

Fig.  2. Solidity parameter versus the normalized area. The triangles 

represents the open and close hand states, and the square dots - those of leg or 
knee. It can be seen clearly that by using the combination of those two 

parameters a tracking mistake between patient’s knee and hand can be 

identified.  

D. Feature Extraction  

Each motion test performed by an examinee was divided 

into time frames of 4 seconds each, with 30% overlap. From 

each time frame a set of spatial and temporal features was then 

extracted separately for each hand. 

The following features were extracted and saved as the 

features vector from every time frame: 

1) Average Absolute Speed and Variance: computed 

separately for each of the three (X, Y, Z) axes and for 

the total speed.  

2) Average Absolute Acceleration and Variance: 

computed separately for each of the three (X, Y, Z) 

axes and for the total acceleration.  

3) Average Absolute Speed above Threshold: This feature 

differs from the first feature by neglecting frames 

where the palm is static. 

4) Average of 5 Maximal Absolute Speeds: computed for 

the three axes (X, Y, Z). The reason for averaging 5 

maximal speeds instead of just picking maximal speed 

is to reduce singular values effect. 

5) Average of 5 Maximal Absolute Accelerations: 

computed separately for each of the axes (X, Y, Z). 

6) Main Motion Frequency and its Amplitude: The 

frequency with the biggest amplitude under FFT (Fast 

Fourier Transform). Computed separately for each of 

the axes (X, Y, Z). This feature gives a measure of how 

distinct the main frequency is. 

7) Number of Typical Frequencies: for each axis of the 

coordinates' FFT with an amplitude of more than 70% 

from the maximal amplitude.  

E. Training the Support Vector Machine  

For the classification between the Healthy and PD patients, 

a Support Vector Machine (SVM) with Radial Basis Function 

(RBF) as its kernel, that is implemented in libsvm package [13] 

is used. The RBF kernel requires optimization of two real 

valued parameters, namely C, and γ. While the γ parameter 

defines how far the influence of a single training example 

reaches, the C parameter trades off the misclassification of 

training examples against the simplicity of the decision surface.  

First, all the feature vectors were scaled to values between 

zero and one. Then, in order to find the optimal C and γ 

parameters for the classification, a grid search procedure is 

carried out in two stages. In the first stage, an exponential scale 

is used for the parameters, and in the second stage, around the 

parameter-values that led to the best classification, a finer 

exponential scale was used to refine the results. To generalize 

the classification results and increase the reliability of the 

system, a cross validation technique is applied for each C and γ 

selection using the Leave-one-Out methodology. In addition, in 

order to avoid an imbalanced training data set, the smaller 

group in the training data set is oversampled till both groups 

are equally sized. A pseudo code of the method appears in Fig. 

3.  

Fig.  3. Pseudo code for the SVM training procedure 

F. Decision Making 

Because the classification stage is performed on four 

seconds time frames and separately for each hand, an addition 

1. Normalize the data set 

2. For Each C, γ: 

2.1. Cross Validate using leave-one-out.  

2.1.1. Train and test the SVM. 

2.1.2. Store the success rate. 

2.2. Compute the average success rate. 

2.3. Update the best C and γ if needed. 

2.4. Return to 2.1 with next C, γ. 

3. Choose C, γ with best average success rate, and 

perform step (2) using fine scale around the 

selected parameters. 

 



 

 

of a high level decision making process is needed. Thus, the 

final classification is performed in two steps, at first each hand 

performance is classified using a majority vote over the time 

frames. Then, for the final classification, the worst-case 

decision is chosen (i.e., if at least one hand action was 

classified as PD, the examinee will be classified as having a 

PD). 

The full proposed scheme is summarized in Fig. 4 below. 

Windowing and
Features Extraction 

(Temporal and Spatial)

Generalize using 
Leave-One-Out 
cross-validation

One of the UPDRS 
motor examinations 1..i

Find next easy frame
Using Hand Palm 

Determination

Motion Tracking 
(forward and backward)

One of the determination steps 
is occurred

Recorded depth and IR frames

. . .Feature vector 
for each window

Decision Making using 
Voting Procedure

Classification
(using SVM)

. . .Classification result for 
each window

 

Fig.  4. Block diagram of the proposed scheme. Starting from 3D image 

acquisition through Hand Palm determination, motion tracking, followed by 
feature extraction, Classification and the Decision making processes.   

G.  Post-Processing Stage 

As a Post-Processing stage, a method for analysis and 

exploring most significant features was implemented. The 

motivation for this stage is double: first, to improve the 

classification by removing unimportant features, and second, to 

provide some feedback to the physician about the most 

important features. 

The features in the feature-vectors described earlier were 

first divided into smaller groups, set by their intuitive relation 

(i.e., velocity components, variances, etc.) Then, the Machine 

Learning phase was performed on all permutations of the 

groups. The combination of parameters with best classification 

results was then selected.  

III. RESULTS 

For the evaluation of the proposed system, a total of 13 

patients were used (8 having PD and 5 Healthy), all the patients 

(Healthy and PD) were examined by a physician before 

recordings. The results for the four UPDRS tests are 

summarized in the following confusion matrices in terms of 

binary classification. Table I and III presents results of the 

Hand Movement test using all 32 features and only the best 

subset, respectively. Table II and IV represents the first 

condition of the Rapid Alternation of Hands test, in the same 

manner. Table V represents the classification results of finger 

taps test. Interestingly, it can be seen that the classification 

using smaller subsets of feature vectors has better results.  

TABLE I.  CONFUSION MATRIX FOR HAND MOVEMENT TEST USING ALL 

FEATURES 

 Healthy PD 

Healthy 80% 20% 

PD 20% 80% 

TABLE II.  CONFUSION MATRIX FOR RAPID ALTERNATING HANDS TEST 

– FIRST CONDITION  USING ALL FEATURES 

 Healthy PD 

Healthy 75% 25% 

PD 0% 100% 

TABLE III.  CONFUSION MATRIX FOR HAND MOVEMENT TEST USING 

ONLY BEST PREDICTORS  

 Healthy PD 

Healthy 80% 20% 

PD 0% 100% 

TABLE IV.  CONFUSION MATRIX FOR RAPID ALTERNATING HANDS 

TEST  - FIRST CONDITION USING ONLY BEST PREDICTORS 

 Healthy PD 

Healthy 100% 0% 

PD 0% 100% 

TABLE V.  CONFUSION MATRIX FOR FINGER TAPS TEST 

 Healthy PD 

Healthy 100% 0% 

PD 0% 100% 

IV. DISCUSSION 

We present a new diagnostic tool that has the ability to 

monitor PD patients as well as extending to other monitoring 

applications providing objective and reproducible quantitative 

outputs. Our approach is non-invasive and can be applied at 

home settings, possibly even over the web. Extension of the 



 

 

tool can be seen to take over the position of the UPDRS scales 

used today, which are subjective measures. Beside the 

application itself, this method shows much promise for general 

machine perception of human conditions. As a further point, 

the general setup of this work seems appropriate for application 

to a wide range of neurological diseases and states.  
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